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Characterizing an outbreak of

vancomycin-resistant enterococci using
hidden Markov models

E. S. McBryde'™*, A. N. Pettitt', B. S. Cooper? and D. L. S. McElwain'

1School of Mathematical Sciences, Queensland University of Technology, GPO Box 2434,
Brisbane, Queensland 4001, Australia
2Modelling and Bioinformatics Department, Centre for Infections Health Protection Agency,
61 Colindale Avenue, London NW9 5EQ, UK

Background. Antibiotic-resistant nosocomial pathogens can arise in epidemic clusters or
sporadically. Genotyping is commonly used to distinguish epidemic from sporadic
vancomycin-resistant enterococci (VRE). We compare this to a statistical method to
determine the transmission characteristics of VRE.

Methods and findings. A structured continuous-time hidden Markov model (HMM) was
developed. The hidden states were the number of VRE-colonized patients (both detected and
undetected). The input for this study was weekly point-prevalence data; 157 weeks of VRE
prevalence. We estimated two parameters: one to quantify the cross-transmission of VRE
and the other to quantify the level of VRE colonization from sporadic sources. We compared
the results to those obtained by concomitant genotyping and phenotyping.

We estimated that 89% of transmissions were due to ward cross-transmission while 11%
were sporadic. Genotyping found that 90% had identical glycopeptide resistance genes and
84% were identical or nearly identical on pulsed-field gel electrophoresis (PFGE).

There was some evidence, based on model selection criteria, that the cross-transmission
parameter changed throughout the study period. The model that allowed for a change in
transmission just prior to the outbreak and again at the peak of the outbreak was superior to
other models. This model estimated that cross-transmission increased at week 120 and
declined after week 135, coinciding with environmental decontamination.

Significance. We found that HMMs can be applied to serial prevalence data to estimate the
characteristics of acquisition of nosocomial pathogens and distinguish between epidemic and
sporadic acquisition. This model was able to estimate transmission parameters despite
imperfect detection of the organism. The results of this model were validated against PFGE
and glycopeptide resistance genotype data and produced very similar results. Additionally,
HMMs can provide information about unobserved events such as undetected colonization.

Keywords: HMM; nosocomial pathogens; genotyping; statistical modelling; VRE
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1. INTRODUCTION

There has been an alarming worldwide increase in
the rate of infection from vancomycin-resistant
enterococci (VRE) in the last 15 years (Murray
2006). Enterococci are part of the normal gastro-
intestinal flora and VRE colonization often is
asymptomatic and undetected. However, in patients
with compromised immune systems and breached
integument, enterococci can become pathogenic,
causing, for example, urinary tract infection, bacter-
aemia and endocarditis. Large teaching hospitals and
intensive care units (ICUs) have the highest rate of
infection with VRE (Weinstein 2005). Infection with
enterococci harbouring a vancomycin resistance gene
is associated with higher mortality (Lodise et al.
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2002) and many strains of VRE are resistant to all
known antibiotics.

Acquisitions of VRE colonization can be grouped
broadly into those that come from cross-transmission
within the ward which we call transmitted, and VRE
that comes from other sources which we call sporadic.
Ward transmission of multi-resistant organisms is
believed to be predominantly from patient to patient
via the transiently contaminated hands of health care
workers (Boyce 2001). The sources of sporadic VRE
include patients’ gastrointestinal tract, prior coloniza-
tion with VRE and transmission from outside the ward.
The presence of VRE on admission is often initially not
detected owing to infrequent swabbing, poor sensitivity
of swabs or undetectable quantities of organism. VRE
may exist in subdetectable numbers in human gut so
that exposure of patients to antibiotics which facilitate
VRE growth (Donskey et al. 2002) may lead to an

This journal is © 2007 The Royal Society
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apparently new case of VRE. VRE is also known to
spread from other hospital wards via patient and staff
movements (Trick et al. 1999).

To select the most appropriate infection control
interventions, one needs to be able to estimate how
much of the new acquisition is transmitted and how
much is sporadic. Restricting antibiotic exposure is
thought to control sporadic VRE, by reducing selection
pressure in patients’ endogenous flora, while hand
hygiene, cohorting, patient isolation and limiting
admission of colonized patients are thought to impact
on transmitted VRE.

Outbreak investigation often involves time intensive
methods to characterize the mode of VRE acquisition.
Genotyping techniques such as pulsed-field gel electro-
phoresis (PFGE), distinguish clonal outbreaks, which
are presumed to be due to transmitted VRE, from
multiple new strain introductions, which are presumed
to be due to sporadic VRE. There are occasions when
this technique breaks down, when horizontal transfer of
the resistance gene, vanA or vanB, can lead to several
different genotypes being detected when in fact a single
transposon is being transmitted (Suppola et al. 1999;
Bradley et al. 2002; Weinstein 2005).

Attempts have been made to distinguish between
these two processes of colonization based on statistical
analysis of surveillance data. Pelupessy et al. (2002)
used a Markov model, without hidden states, to
estimate transmission parameters; finding estimates
were similar to those using full event data and
genotyping (PFGE). Cooper & Lipsitch (2004) used
structured and unstructured hidden Markov models
(HMMs) to describe infection incidence time-series data
and to estimate transmission parameters. Collinearity
between parameter estimates, failure of convergence
and computational difficulties were identified as
potential problems using HMMs for sparse data such
asis typically found in time-series infection control data.
Forrester & Pettitt (2005) compared background rates
with cross-transmission rates of methicillin-resistance
Staphylococcus aureus, finding background rates were
larger than cross-transmission rates.

Estimating transmission coefficients using hospital
infection control data has a number of challenges. There
are unobserved processes occurring; the time of new
acquisition of colonization is not observed. Additionally,
when relying on routine swabs to determine the number
of colonized patients, the sensitivity of swabs is less
than 100%.

This study uses an epidemic model structure to
characterize transmission of VRE during an outbreak at
an 800 bed Australian teaching hospital. The current
paper extends the work by Pelupessy et al. (2002) by
estimating epidemiological parameters in the presence of
suboptimal swab sensitivities. It also allows for the fact
that new colonizations are not immediately detectable.
We use an HMM structure to estimate transmission in
the face of incomplete datasets and unobserved events.
This framework distinguishes between rates of trans-
mitted and sporadic VRE acquisitions. This study also
considers that the transmission rates may change over
time. Section 2.1 describes the data used to estimate VRE
epidemic determinants. Section 2.4 describes the model of

J. R. Soc. Interface (2007)

VRE transmission, while §2.5 describes the HMM and the
methodology behind it. Section 3 gives the results of the
parameter estimates, comparison of model estimates and
genotyping data and model selection.

2. METHODS

2.1. Description of outbreak and infection
control interventions

VRE was first isolated at the Princess Alexandra
Hospital, Brisbane, Australia in October 1996 and a
VRE screening programme commenced in January 1997,
the beginning of the data collection period for this study.
Data used in this study are VRE colonization data from
the ICU, renal and infectious diseases units. VRE
colonized patients and were identified by clinical isolates,
weekly routine screening and contact tracing swabs.
Infection control interventions introduced from the start
of the study period were restriction of vancomycin and
third-generation cephalosporin use and isolation of
colonized patients. From week 125 of this study, infection
control teams were aware of an increased prevalence of
VRE and further measures were taken. Dedicated
equipment was used in patient rooms and patients were
cohorted. VRE patients requiring haemodialysis used a
dialysis facility within the infection control unit. Medical
and nursing staff wore disposable aprons and latex gloves
for patient contacts. An environmental audit was
performed in August 1999, approximately week 135 of
the study period and an aggressive cleaning programme
was instituted (Bartley et al. 2001).

2.2. Serial survetllance data used for statistical
analysis

Input data for the statistical model in this study were:

— Weekly prevalence data for VRE colonization.

— Mean length of stay of colonized patients: 15 days.
This was calculated as the time from first identifi-
cation of colonization to discharge.

— The total number of beds in the wards, N=68.

The data were collected from 1 January 1997 to 31
December 1999. The weekly prevalence data are shown
in figure 1.

2.3. Data used for cluster analysis

Microbiological and clinical data were collected, includ-
ing admission dates and discharge dates of VRE
colonized patients, as well as the date of first positive
isolate. Additionally, we had information on the
colonization status on admission of three of the patients
transferred from other hospitals. Genotype data, both
PFGE and glycopeptide resistance genotyping, were
compared with the results of the statistical analysis as
part of the study validation. Presumptive VRE colonies
were identified using standard techniques. Speciation
(distinguishing Fnterococcus faeciumand Enterococcus
faecalis) was initially achieved by carbohydrate fermen-
tation reactions of arabinose, mannose and raffinose
then confirmed by a multiplex PCR assay based on
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Figure 1. Prevalence data for VRE over 157 weeks. Arrows show times in which changes in transmission rates may have
taken place.

specific detection of genes encoding p-alanine: b-alanine
ligases (Bartley et al. 2001). VRE phenotype was
identified based on vancomycin and teichoplanin mean
inhibitory concentrations using the E-test method. This
presumptively distinguishes vanA VRE, resistant to
both vancomycin and teichoplanin, from vanB VRE,
resistant to vancomycin but sensitive to teichoplanin.
This phenotype result was confirmed by glycopeptide
resistance genotyping, achieved through a modified
multiplex PCR assay, described in detail by Bartley
et al. (2001).

In the study on this outbreak by Bartley et al.
(2001), isolates were also characterized using PFGE.
Electrophoretic band patterns were analysed according
to the criteria established by Tenover et al. (1995).
Computer comparison using GeEL CoMPAR v. 4.1
(Applied Maths Kortrijk, Belgium) was based on the
algorithm of the unweighted pair group method for
arithmetic averages and using the Dice coefficient with
1.5% band tolerance (Bartley et al. 2001). This
information was used to estimate the proportion of
isolates that were from the same strain.

2.4. Model of transmission

We based our ward transmission model on the
Susceptible-infected model with migration, described
by Bailey (1975). Modified versions of this model have
been used previously to analyse nosocomial trans-
mission data (Pelupessy et al. 2002; Cooper & Lipsitch
2004; Forrester & Pettitt 2005).

A schematic of the model is shown in figure 2. The rate
of cross-transmission of VRE colonization (per colonized
per susceptible patient per day) is denoted by @. It is
assumed that the ward is of fixed size, N, hence the
number of uncolonized patients is N— C. Colonized
patients are assumed to remain colonized for their entire
hospital stay, therefore, transition from colonized to
uncolonized occurs via discharge of a colonized patient
and replacement with an uncolonized patient, which
occurs at a rate u. Duration of stay of colonized patients
was available from the dataset. Acquisition of VRE, that
is transmitted, is described by the mass-action term,
BC(N— C). VRE acquisition, that is sporadic, can arise

J. R. Soc. Interface (2007)

BC(N-C)+v(N-C)

uc

Figure 2. The transmission of bacterial pathogens in the
hospital ward.

through ward admission of a colonized patient or any
other process that is not related to the number of
colonized patients, and occurs at a rate, »(N— C'). Each
of the processes that lead to sporadic acquisition (for
example, prior colonization or colonization from out-
of-ward sources, endogenous gastrointestinal coloniza-
tion) can reasonably be assumed to be independent of the
number of colonized patients in the ward.

The probability of a change in the number of colonized
patients, C, in a short time period, h, is given by

Pr[C(t+ h) =i+ 1|C(t) = 1]

= Bi(N—1i)h +v(N—1i)h + o(h),
Pr[C(t+ h) = i —1|C(t) = 1] = wih + o(h),
Pr[C(t + h) = i|C(t) = i

= 1—Bi(N — i)h— (N — i)h— wih + o(h),
Pr[C(t+h) =j(#i—1,4,1+ 1)|C(t) = 1] = o(h).

(2.1)
The number of colonized patients in the ward, C(?),
forms a Markov process on state space 0, ..., N, where

N is the number of patients on the ward. Reflecting
boundaries occur at states i=0 and i= N, provided
v>0, otherwise 0 is an absorbing state, and provided
u>0, otherwise N is an absorbing state.

2.5. Hidden Markov model

We aim to estimate parameters associated with
sporadic colonization, v, and the colonization caused
by ward transmission, 8, using the structured HMM
illustrated in figure 3.
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C :@ :@ :@

Figure 3. Hidden Markov model. Here, C represents the
number of colonized patients in the ward (detected or
undetected), Y represents the number of patients detected
at each time point. The horizontal arrows represent the
transition from one state to the next, and the vertical arrows
represent the relationship between the hidden state and the
corresponding observation.

Our HMM consists of: observations, Y, the number
of patients detected at each time point; underlying
hidden states, C, the number of colonized patients in
the ward; a transition model linking each hidden state
with its adjacent states, represented by horizontal lines
in figure 3; an observation model linking the data with
the hidden state, represented by the vertical lines in
figure 3. There is one hidden state for each observation,
denoted C, Oy, ..., C,.

The full conditional probability of any node depends
only on neighbouring nodes to which it is connected
directly. The observation component of the HMM,
denoted by Y, consists of 157 data inputs of weekly
VRE prevalence taken over 3 years and the vector of time
points, t=t, ..., t,, corresponding to each observation
time. The vector C consists of the n=157 hidden states.
The transition probability matrix, giving the relationship
between the hidden states, is described in appendix A.
The observation model, giving the relationship between
the observed and hidden states, is described in §2.6.

The parameters used in the model are given in table 1.

2.5.1. Model assumptions. The model makes the
following assumptions

(i) The ward is of fixed size, N.

(ii) The model parameters are time invariant (this
assumption is relaxed later in the study).

(iii) Each colonized patient remains colonized for
the remainder of their stay.

(iv) Each observation of patients not known to be
colonized is conditionally independent given
the corresponding hidden state.

(v) The hidden states follow a first order time
homogenous Markov process, that is

Pr(C(#,)|C(t), ..., C(t—1))
= Pr(C(#)|C(ta))
= Pr(C(t, — t4)[C(0)).

(vi) Homogenous mixing of patients takes place.

(vii) Uncolonized patients are identical with respect
to susceptibility to colonization.

(viii) Colonized patients are identical with respect to
transmission of VRE.

(ix) Time from colonization to discharge is expo-
nentially distributed. Review of patient
histories confirms that this is approximately
the case.

These assumptions are discussed in §4.

J. R. Soc. Interface (2007)

Table 1. Parameters used in the model. Fitted values are
discussed in §3.

parameter symbol value source

number of N 68 directly from
patients dataset

removal rate 1/15 day ~* directly from
of colonized dataset
patient

transmission 1.0Xx1073 fitted using
rate HMM

sporadic v 2.0x10~* fitted using
acquisition HMM
rate

detection D 0.58-0.97 literature
probability review

2.6. Observation model

The probability of being known to be colonized (and
therefore being included in the prevalence data) given
that a patient is colonized, d, was unknown. Literature
sources regarding the sensitivity of rectal swabs in
detecting VRE were used to develop an expression for
the uncertainty in this parameter. Estimates of the
sensitivity of a rectal swab for VRE range from 0.58
(D’Agata et al. 2002) to 0.97 (Reisner et al. 2000) with
values in between (Lemmen et al. 2001; Trick et al.
2004). We allowed for the uncertainty regarding the
detection by assigning a uniform [0.58,0.97] prior
distribution to d. The probability of detection at a
given prevalence check, d, used in this study was
patient related rather than simply swab related. If a
patient was known from previous swabs to be colonized,
the patient was automatically detected, thus d would be
expected to be at least as high as the sensitivity of a
single swab. The observation model assumed that each
week’s observed prevalence is independent of the
previous week’s observed prevalence, given the under-
lying true prevalence. This is an approximation as the
true detection is the known colonized patients from
the previous week and the new colonizations from the
current week.

The probability relationship between the states and
the data is described by the binomial distribution
Y;~Bin(C}, d), where Y} is the kth observed coloniza-
tion prevalence and C} is the actual number of
colonized patients, the hidden state, at time ¢,. This
assumes that the probability, d, remains constant over
the study period (for each iteration) and the probability
of detection of each colonized patient is independent of
the number of other colonized patients.

Alternative observation models with greater dis-
persion could have been used. For example, the Poisson
or negative binomial distribution could have been
chosen, had we been dealing with incidence rather
than prevalence data. We chose the binomial distri-
bution because it has a sound probabilistic basis
(assuming fixed detection) and, unlike the Poisson,
ensures that the hidden state (number colonized) is
always larger than the observation (number detected),
a necessary result when using prevalence data.
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2.7. Bayesian framework for the proportion; this is the same as the uniform|0, 1]
prior. The probability of the data is given by the
binomial Bin(a; (a+b), p), where a is the number of
identical isolates and b is the number of non-identical
isolates, as detected by the laboratory methods. The
posterior probability density of p is Beta(1+a, 14 b).

The parameters for transmitted VRE, 8 and sporadic
VRE, v were estimated using a Bayesian framework.
Let 0,={8, v, d} be the vector of model parameters.
Baum et al.’s (1970) recursion formula, summarized in
appendix B, was used to determine the likelihood of the
data, {( Y]6,). Uniform U|0, 0.1] priors were assigned to
B and v, because little was known about these
parameters other than that negative values or values 3. RESULTS
higher than 0.1 were completely implausible. The

posterior probability distributions
Pr(6,|Y) o n(0)I(Y]6,), (2.2) The estgllated value for tl}i transmlsﬁlzlon coefficient, ¢ was
10X 107 (Clgs 7.9X 1077, 13X 107 ) and the sporadic

3.1. Transmission parameter estimation

Interface

were estimated using a Monte-Carlo Markov chain

|z acquisition rate v was 2.0X10”% (Clys 0.85Xx10~ %
<zt = z algorithm, described in appendix C. R l—f B v ( 9 )
2. 00 - . . 3.8X107%). The coefficient of correlation between @
Sk The Bayesian framework can provide estimates (and d . d to be —0.24. Th 1

ol . . . . and v was estimated to be .24. ese results were
O|E2 full posterior probability density) of any function of

obtained using a Markov chain Monte-Carlo algo-
rithm with a burn-in period of 50 000 as described in
appendix C.

The basic reproduction ratio, Ry, is ‘the average
number of persons directly infected by an infectious
case during its entire infectious period, after entering a
totally susceptible population’ (Giesecke 1994). In this
model it can be shown to be Ry=gN/u. This formula
for R is an approximation as there is a finite population
in this setting. The basic reproduction ratio is

model parameters including functions which depend
upon knowledge of hidden states. Let 6, be the vector of
n inferred hidden states Ci, ..., C, and let 6={8,,, 0,,}.
The expected number of within-ward transmissions
for the week, following week k is 8Cy(N— C}), while
the total number of transmissions is BCL(N— C})
+v(N— C}). The expected proportion of VRE acqui-
sitions due to ward transmission over the time of the
study, f(8), is approximated by

m

u - _ estimated to be 1.07 (Clgs 0.78-1.34).
> BC(N—Cp)
G 1(0) = E=1 (2.3) The mean value for the estimated detection rate, d,
h é\/: BO(N— C) +v(N— ) ' ‘ was 0.75 with a 95% credible interval of 0.59-0.93.
(N—C,) +v(N—C,
L & k k k
m We evaluate the expectation, E[f(8)| Y], by drawing ] o
H samples 0, k=1, ..., m from p(0|Y) and using the 3.2. Compar:zson of statistical model and
: approximation of Gilks et al. (1996, ch. 1) genotyping data
—

1 The proportion of VRE acquisitions due to trans-
ELf(0)]Y] “m kz;f(ok)' (24) mission, was estimated to be 89% (Clys=78-95%),

— -

3 ;‘ﬁ . . . . using Bayesian inference applied to the HMM
%5 %5 ) Thg algorlthlp for this Monte-Carlo integration is 1 cture. This compares with 84% (41/49) of isolates
Q|Z3 given in appendix C. observed to be identical or nearly identical using PFGE

genotyping and 90% (44/49) using glycopeptide resist-
ance genotyping. The posterior distribution of the
estimated proportion of colonizations due to ward
transmission compared with those found to be identical
A genotyping study was performed on the VRE isolates by glycopeptide resistance genotype and PFGE
by Bartley et al. (2001). Of the 49 isolates available for =~ methods are displayed in figure 4.
analysis, 44 were found to be FE. faecium vanA using
glycopeptide resistance genotyping. The estimated
number of isolates having identical or closely related
patterns on PFGE using the criteria of Tenover et al.
(1995) was 41 of 49. The length of stay following colonization could be
greater than the estimated 15 days because acquisition
could have preceded detection. Conversely, the length
2.8.1. Cluster analysis based on genotypic relatedness. of stay could have been less than 15 days because
We compared the proportion of ‘identical isolates’ undetected colonized patients are likely to have shorter
(presumed to be part of a cluster) with the estimated stays than detected colonized patients. We therefore
proportion of transmitted VRE derived from the HMM performed a sensitivity analysis on the discharge rate
and prevalence data. The posterior probability distri- parameter, u. We took upper and lower values for u
bution of the proportion of VRE cases that are identical which we believed at the extreme ends of plausibility.

2.8. Comparison of cluster analysis results using
genotyping with statistical analysis

3.3. Sensitivity analysis

Interface

2|2 by genotype can readily be derived using a Bayesian We then repeated the estimation of the proportion of
S > . . .. ; . . ..

z! ok framework and conjugate prior distribution (Gelman  VRE acquisitions due to within-ward transmission.

80 ;g et al. 2004). Denote the parameter of interest, the  Results are given in table 2.

=|Fa proportion of VRE acquisitions that are identical, by p. Table 2 shows there is a small change in the estimate

Assume the form Beta(1, 1) for the prior distribution for large changes in the discharge parameter, u.

J. R. Soc. Interface (2007)
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[ statistical result
10f —— PFGEdata

. glycopeptide
st resistance data J

posterior probability density
(o2}

4. 4
]
| il
1
0 0.2 0.4 0.6 0.8 10

proportion of colonization due to cross-transmission

Figure 4. Posterior distribution of proportion of VRE
acquisitions that are due to ward transmission. The histogram
gives the posterior distribution from the Bayesian analysis of
the HMM, the solid curve gives the posterior distribution
based on the observed proportion of identical strains using
PFGE genotype data and the broken line gives the posterior
distribution based on observed proportion of identical strains
using glycopeptide resistance phenotype and genotype data
(Bartley et al. 2001).

Table 2. Analysis of sensitivity of the model outcome to
changes in the discharge rate, u.

U estimated proportion (%)
1/10 91.4

1/15 89

1/20 86.5

3.4. Model selection

The values of the deviance information criterion (DIC)
were used to assess the optimum model to fit the data
(Gelman et al. 2004). Results are given in table 3.
Several models were explored. Setting either § or » to
zero led to much higher values for the DIC, giving
substantial statistical support to a mixed model, in which
VRE colonization arose both from cross-transmission in
the ward and sporadically. The model in which § changed
after week 120 was a superior fit to the model with time-
invariant parameters. Allowing for a further change in
after week 135 provided the best fit of those models
investigated. The effective number of parameters in a
latent variable model depends on the collinearity of the
parameters and the influence of the latent variables.

4. DISCUSSION

The aim of this study was to characterize transmission
of VRE using statistical methods and simple serial
surveillance data. We included a term for sporadic
colonization because we believe that new acquisitions of
VRE could occur through means other than within-
ward patient to patient cross-transmission. Sources of
sporadic colonization have been labelled in the past as
endogenous, spontaneous (Pelupessy et al. 2002) or

J. R. Soc. Interface (2007)

background (Forrester & Pettitt 2005). Our statistical
methods were designed to quantify the rates of sporadic
and cross-transmitted VRE. Previous attempts have
encountered difficulties especially with identifiability of
variables (Cooper & Lipsitch 2004).

Full patient histories, PFGE and glycopeptide
resistance genotype data were used for validation but
were not included in the statistical analysis in this
study. Estimates of the proportion of VRE resulting
from cross-transmission based on statistical methods
(HMMs) in this study were very similar to those based
on vancomycin resistance genotype data.

The proportion of clustered isolates based on PFGE
analysis was lower than both the vancomycin resistance
genotype data and the statistical analysis. This could
be due to horizontal transfer of resistance gene to new
strains of enterococci, which has been reported pre-
viously (Suppola et al. 1999; Weinstein 2005). If
horizontal transfer of resistance genes occurs during
an outbreak, cross-transmitted strains have identical
glycopeptide resistance genotypes but different PFGE
patterns, hence PFGE underestimates clustering.

Using a structured HMM, one can estimate the
hidden states behind the data, the number of patients
colonized on the ward (both detected and undetected).
We estimated the basic reproduction ratio to be close to
unity, the threshold value that could lead to endemic
VRE. We were able to make estimates of transmission
in the face of imperfect datasets in which transmission
times and patient histories were unknown and swab
sensitivity was considerably less than 100%. This
approach is similar to that of Cooper & Lipsitch
(2004), who observed monthly infection incidence and
assumed a Poisson relationship with the number
colonized, the hidden state. The current study avoids
the ambiguity of the relationship between the obser-
vations and the hidden state using prevalence (observed
number detected at time points) which relates directly
to the hidden state, the number colonized, through a
binomial relationship.

For simplicity, this study assumed homogenous
mixing of staff and patients. Future studies could
extend this model to include ward coupling, however,
dividing the data to incorporate ward structure would
lead to reduced precision in parameter estimates and
increased model complexity. We incorporated this
uncertainty into our parameter estimates and model
conclusions were robust to changes in its value.

The time to discharge was estimated by taking the
mean time from first identification of colonized patients
to discharge (15 days). The discharge rate was taken as
the reciprocal of the mean time to colonization. This
assumes that the time to discharge was exponentially
distributed which was indeed approximately the case
for those known to be colonized. The true time to
discharge of colonized patients could have been longer
than estimated in this study if patients were colonized
for significant time-intervals prior to detection or they
could have been shorter if a substantial number of the
undetected colonized patients had shorter durations of
stay. We performed a sensitivity analysis on the
discharge rate parameter, u, and found large changes
in u (£33%) resulted in small changes in the estimates
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Table 3. Comparison of different models using the deviance information criterion. Py;: effective number of parameters.

model

estimate of 8 (95% CI)X10™* estimate of » (95% CI)X10~* DIC P,

one value for v and three values for g with
change points at the end of week 120 and 135

$,3.4(0.28-8.8)
8,15.3(13.5-17.1)

8510.9(7.1-13.0)

one value for » and two values for § with
change point at the end of week 120

one value for » and one value for 8

one value for v and two values for 8 with
change point at the end of week 135

B=0 and one value for » 0

v=0 and one value for §

10(7.9-13)

$,3.4(0.28-8.7)
8,11.9(10.2-13.5)

B8111(7.6-14.6)
859.6(7.9-11.4)

8.7(6.9-10.1)

2.2(0.96-4.0) 251 4.0
2.2(0.96-4.0) 253 2.3
2.0(0.85-3.8) 261 2.6
2.0(0.88-3.7) 261 2.6
9.7(7.7-11.7) 393 1.2
0 531 15

of proportion of patients colonized within the ward and
is therefore unlikely to have influenced the conclusions
of this study.

The model presented in this study postulated that
VRE acquisition arose from both cross-transmission
and sporadic sources. Model comparison techniques
found this model to be a far superior fit to the data
compared with models which relied on either cross-
transmission or sporadic sources of VRE acquisition
alone, strongly supporting that both modes of acqui-
sition were taking place.

We investigated changes in transmission over time
using a structured epidemic model. Model comparison
showed that there was evidence supporting the
conclusion that there was an increase in cross-trans-
mission just prior to the outbreak. There was limited
evidence that the cross-transmission rate reduced after
the epidemic peak at week 135, coinciding with the
environmental cleaning intervention. Future studies
using larger surveillance datasets could extend the
methodology presented to consider more models in
which parameters are time-dependent. One approach
to this would be to use the reversible jump Monte-Carlo
Markov chain method (Green 1995) or the birth-death
Markov process model (Stephens 2000).

Inaccuracies in PFGE cluster analysis can arise from
the horizontal transfer of resistance genes. Glycopep-
tide resistance genotype analyses are not subject to
inaccuracies due to gene transfer but cannot distinguish
different strains that might all be of the same resistance
genotype. Statistical methods are not subject to these
problems and have the additional advantage that they
are not resource intensive. It is interesting to speculate
whether they also have the potential to be used in real
time, within a control-chart outbreak alert system.

The model presented here can be used to model the
transmission of other bacterial pathogens in small scale
settings of healthcare institutions, such as methicillin-
resistant Staphylococcus aureus, extended spectrum
beta-lactamase producing and other multi-resistant
Gram-negative pathogens.

This work was partially supported by a grant under the
Australian Research Council Linkage Scheme (LP0347112)
and NHMRC scholarship number 290541. The authors
would like to thank Dr Mike Whitby for providing data
and Dr Paul Bartley for helpful comments. The authors
would like to thank the anonymous reviewers for their
constructive comments.
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APPENDIX A. CONSTRUCTING A TRANSITION
PROBABILITY MATRIX

Following the theory of Cox & Miller (1965), we
developed a transition probability matrix, I, ).
The 4jth element of I'(,_,  gives the probability
of having j colonized patients on the ward at time ¢,
given that there were ¢ colonized patients on the ward
at time ;1.

To construct the transition probability matrix for an
arbitrary time-interval, first we developed a discrete
time transition probability matrix, A, for a small time-
interval, h. Let A be the matrix in which the #th
element is given by Pr(C(t+h)=4]C(t)=14). A is given
using the system of equation (2.1). Here, 7 and j are the
number of patients colonized in the ward and can take
on values 0, ..., N.

Let p(t) be the (N+1) vector of probabilities of the
number colonized at time t. The generator matrix, G is
a square, (N+1)X(N+1), matrix that has the
property that

(A1)

The #th element of the generator matrix, G, is
the instantaneous rate of change of probability of
being in state j, given a beginning in state 7. Then G
is given by

1
G =lim_ (A=), (A2)
where I is the identity matrix.
Following from expression (A 2), we have
Ptig1) = ptp)el W, (A3)

in general. Specifically, after a time-interval ¢;,—t,_, the
probability of being in state j having begun in state i is
the ijth element of the transition probability matrix,
given by

Ty, = Pr(Cp =l Chy = i) = (W09, (A4)

Cox & Miller (1965, ch. 4.5) and MacDonald &
Zucchini (1997) give an expanded explanation. The
matrix exponential e(#~%1)¢ was calculated using the

MATLAB ‘expm’ function.
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APPENDIX B. LIKELTHOOD COMPUTATION

The probability of the full dataset and a particular
sequence of hidden states, C}, Cs, ..., C, is given by
Pr( Yl7 ceny Y,“ Cl? ceey OIL|6? V)

= Pr(C)Pr(Y1| () H I'g ¢, Pr(Y[Cy),
h=2

(B1)

with I'¢, ¢, as defined in appendix A.

The likelihood calculation of this single permutation
of hidden states requires 2n computations even after the
matrix exponential has been evaluated. The full
likelihood of the data over all the states is

Pr(Yy,...,Y,|8,v)

N+1 N+1
= > Pr(Yy,.., Y, G, CllBy), (B2)
=1 C,=1
which requires 2n(N+1)" computations for one
likelihood evaluation (Le Strat & Carrat 1999). This
intractable calculation (with n=157 and N=68) can be
simplified using Baum’s recursion technique (Baum
et al. 1970) as shown below.

The forward recursion involves simplifying the
likelihood computations by considering a partial
observation sequence and a single state sequence. Let
¢(i) be the probability of the partial observation
sequence (Y7, Yy, ..., Y;) produced by all possible
state sequences that end in state i. The probability is
given by

d’k(l) :L(Ylavykv Ck :Z|V76), kSn (B 3)

Let 6 be the (size N+ 1) vector of probabilities of the
first state, (6;=Pr(C;=1)). In the forward recursion
method of likelihood computation, the value of é needs
to be determined in the absence of data. The stationary
distribution of the transition matrix can be used for this
(MacDonald & Zucchini 1997). The probability of the
first state and first observation, Y7, is given by

¢1(i) = 6,;Pr(Y1|Cy = 7). (B 4)

The forward recursion formula is then applied. We
multiply every state probability, ¢._i(¢), by the
transition probability I';; and by the probability of the
kth data point, given the hidden state j. This results in
a vector of probabilities which is then summed to
determine ¢,( 7). Thus, the probability of subsequent
states is given by

N
or(J) = [Z b1 ()T
i=0

At each step in the forward recursion, the procedure
can be terminated and the probability of the partial
observation sequence is determined by

Pr(Yy|Cy =j).  (B))

N
Pr(Yy,.., Vv, 8) = > ¢4(i). (B6)
=0
The likelihood of the data can then be determined by
N
Pr(Yy, ..., V,[8,0) =Y (i) (B7)
=0

See Petrushin (2000) for a detailed discussion of the
forward and backward recursion formulae.

J. R. Soc. Interface (2007)

APPENDIX C. MONTE-CARLO MARKOV CHAIN
ALGORITHM

The algorithm for this Monte-Carlo integration used to
estimate the proportion of VRE acquisitions due to
ward cross-transmission, f(#), is given below.

The MCMC algorithm has the following steps:

(i) Assume the prior probability for 8 and », to be
(U[0,0.1]). These priors were used as little
prior information was known except that
negative values and values greater than 0.1
are completely implausible.

(ii) Initialize B, v and d. Different initial values
were chosen from (8=10"" to =102, from
y=10"" to »=10"?) and from d=0.58 to
d=0.97.

(iii) Assign the prior probability of the hidden
states. A discrete uniform distribution on
(0, ..., N) was used.

(iv) Initialize each hidden state using its corre-
sponding observation and the (binomial) obser-
vation model Y;,~Bin(Cy, d).

(v) Determine the probability of the data and
sequence of hidden states using equation (B 1).

(vi) Propose a new (8 using a simple random walk,
the step size ~N(0, 10~ %).

(vii) Accept B’ using a Metropolis-Hastings step
with the acceptance probability

0= min{l w(8)Pr(Y, C|8)a(8' ~ ﬁ)}
" (B)Pr(Y, Cl8)a(6—8) |

(C1)

where g(8— (') is the proposal probability for
B’ from @ which is the normal density for 8’
with mean 8 and variance 10~ %,

(viii) Repeat for »" and d'.

(ix) Update each hidden state using a Gibbs
update, drawing from the distributions given
by the conditional probability of the states,
determined by neighbouring states and obser-
vations, as described below.

(x) Determine f(@) for the particular sequence of
hidden states and parameters § and v using
expression (A 3).

(xi) Tterate by returning to step (iv).

(xii) Burn-inusing 50 000 iterations. Use the following
50 000 updates to estimate the posterior prob-
ability distribution (using the ergodic average) of
the hidden states (Cy, ..., C,) and f(8).

(xiil) Repeat steps 2-12 to construct 10 such Markov
chains each with different initial values.
Convergence tests showed that 50 000 updates
were sufficient to get precise estimates of the
parameters (R=1.02 for estimates of logit
(proportion)) (Gelman et al. 2004, ch. 11.6).

(xiv) Use 10X50000 updates to determine the
posterior probability densities of the model
parameters.

The Gibbs update involves determining the
conditional probability of the hidden states (given
everything else). The assumption that the hidden states
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are a first order Markov process means that the
conditional probability of the hidden states is based
only on neighbouring states and the corresponding
datum. The full conditional probability of the hidden
state, Cp,(k=2, ..., n—1), is given by
Pr(Cy = i|C\, y) * Pr(Cpyy = j|C, = i)
XPr(Cp = 1| Cjy = h)Pr(Y;|Cp = 1),
where C\; is the set of all states other than Cj; and i is
the proposed value of the kth hidden state; and h and j
are the current values of the hidden states k—1 and
k+1, respectively.
The first and last states depend only on a single
neighbour and the data associated with that state. That is
Pr(Cy =i C\;,Y) « Pr(Cy = j| €, = i)Pr(Y1|C, =),

(C2)

(C3)
and
Pr(C, =1l C\n’ Y)xPr(C, =ilC,—y =h)Pr(Y,|C, =1).
(C4)

The conditional probability of the states can be
determined and this becomes the sampling distribution
for the hidden state. Each of the nstates can be updated in
a forward, backward or random manner. To estimate
values of v and 8, we do not need to infer hidden states.
The simplified MCMC algorithm has the following steps:

(i) Assign the prior probability for § and v using
(UJ0, 0.1]).
(ii) Initialize G, v and d.
(iii) Determine the likelihood of the data using Baum’s
recursion formula.
(iv) Propose a new ' using a simple random walk, the
step size ~ N(0, 0.0001).
(v) Accept 8 using a Metropolis—Hastings step with
the acceptance probability
/ / !/
ommin1 L5
m(B)I(Y|8)q(6—8)
(vi) Repeat for v and d.
(vii) Iterate as above.

(C5)
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